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Diagnostic Screening

I Screening humans and animals for a multitude of diseases
common practice in modern medicine

I throat culture for strep throat
I ELISA for HIV
I tissue biopsy for cancer

I Unfortunately, many tests are imperfect

I Statistical methods exist to quantify the accuracy of a
screening test



Types of Tests

Raw test results may be:
I binary, i.e. cancerous cells are present=1/not present=0
I discrete, i.e. colony count in bacterial culture
I continuous, i.e. optical density of serology test

For a binary test, performance defined using conditional
probability.



A bit on Conditional Probability

A method for adjusting probability if additional information is
available about the outcome.

Major
Engineering Math Tot

Male 14 6 20
Female 1 9 10

Tot 15 15 30
Randomly select a student from this class. What is the
probability the student is

1. male?
2. a male given you know the student is an engineer, written

P(Male | Engr)?
3. an engineer given you know the student is male, i.e.

P(Engr | Male)?



Measures of Diagnostic Test Performance

I Sensitivity = Probability diseased person tests positive =
P(+|D)

I Specificity = Prob undiseased person tests negative =
P(−| No D)

I π = proportion of population having disease



The Easy Case

Easiest way to estimate the sensitivity and specificity is to
administer the test to subjects whose disease status is
known.

I Sensitivity (Se) is estimated by the sample proportion of
positive tests among the diseased subjects

I Specificity (Sp) is estimated by sample proportion of
negative tests among the non-diseased subjects

Stat 1 methods can typically be used to obtain confidence
intervals for Se and Sp

p̂ ± zα
2

√
p̂(1− p̂)

n
where p̂ is the proportion having the characteristic of interest in
the sample



Pink = person has disease 
White = person does not have disease 
+ = screening test is positive 
- = screening test is negative 



Pink = person has disease 
White = person does not have disease 
+ = screening test is positive 
- = screening test is negative 
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No Gold Standard Case

I “No gold standard” (NGS) data occur when there is no
perfect test so that the true disease status of subjects is
unknown (how to estimate SE, SP, π?)

I First breakthrough in NGS data in 1980, Hui and Walter
used 2 indept tests on 2 pops



Hui and Walter Solution to NGS Case

I Need two tests and two populations (could be
males/females)

I For example, suppose we group the people in this room by
gender

I We test each person with a serology test and a bacterial
culture test for Strep Throat

I We don’t know the true disease status of anyone

Name Serology Culture Group
John + + 1
Jane - + 2

Susan + - 2
Summarize data with n1++=number in group 1 test + on both
test, n1+−, n1−+, n1−−,n2++,n2+−, n2−+, n2−−



Hui and Walter, 1980

I With 2 tests in 2 populations, can estimate Se and Sp for
both tests and prevalences in both populations using Max
Lik: {Se1, Se2, Sp1, Sp2, π1, π2} WITHOUT KNOWING
ANYONE’S TRUE DISEASE STATUS

I A few assumptions

I Tests are independent conditional on disease status
I The prevalences of the two pops are different
I Se and Sp of both tests are the same for both pops



The Data

We are able to estimate the 6 parameters since we have 6
“bits” of data

Test 2
Pop 1 + - Tot

+ 14 4 18
T 1 - 9 528 537

Tot 23 532 555

Test 2
Pop 2 + - Tot

+ 887 31 918
T 1 - 37 367 404

Tot 924 398 1322

Let ngij be the number in group g having test 1 and 2 outcomes
i and j . So, n1+− = 4 Getting estimates of
{Se1, Se2, Sp1, Sp2, π1, π2} now like solving system of 6 eqns in
6 unknowns.
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The Data

I Current research considers NGS data where subjects are
screened repeated over time, longitudinal data

I Longitudinal methods have been applied to: HIV,
diagnosing ovarian cancer, modeling cognition in dementia
patients

I And to diagnosing Johne’s Disease in cows



Johne’s Disease

I No cure
I Significant economic losses due to reduced milk

production
I No symptoms for roughly one year
I Early detection prevents disease from spreading
I “Semi-annual” screening of 365 cows with two imperfect

tests administered at each test time: serology test
(continuous) and a fecal culture test (binary)



Johne’s Disease Data
Goal is to correctly classify cows as diseased or not using this
data (Norris, Johnson, and Gardner, 2009)
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Bayesian versus Frequentist Data Analysis

I We used Bayesian methods to analyze the longitudinal
fecal and serology tests for cows

I Frequentists make inferences based on the data only
I Bayesians use both the data collected AND so-called

“prior” information from another independent source
(previous study, expert, etc)

I data and prior are combined in a probabilistically coherent
manner using Bayes Theorem to obtain the “posterior
distribution”

I mean of posterior distribution often taken as estimate of
parameter; may have a nice formula



Bayes Theorem

f (µ|data) =
f (data | µ) · g(µ)

P(data)
=

f (x | µ) · g(µ)

P(x)

I g(µ), the prior, reflects the probabilities associated with
different values of the parameter before data is seen

I f (x | µ) represents the information about the parameter µ
that is contained in the data

I The posterior distribution, f (µ | x), represents the
“updated” probability distribution of µ once the prior has
been combined with the information in the data

I Once posterior distn of µ is obtained, often use its mean to
estimate µ



Example of Bayesian and Frequentist Analysis

The problem (from Samaniego and Reneau, 1994):
I population consists of the first words of the 758 pages in a

particular edition of W. Somerset Maugham’s book Of
Human Bondage

I task is to estimate p, the true proportion of words that have
6 or more letters

I The data will consist the number of words having 6 or more
letters from 10 randomly selected pages. (n= sample size
=10)

I The frequentist estimate of p is p̂ =
the number of words having 6 or more letters in sample

10



Example of Bayesian and Frequentist Analysis

For a Bayesian analysis, you may construct a prior as follows:

I first take your best guess at the proportion of words having
6 or more letters, call it p*. Suppose my p* = 0.40.

I Now consider how much “weight,” α ∈ [0, 1], you want to
put on the data, i.e. p̂

I Estimate p by αp̂ + (1− α)p∗
I I choose α = 0.75
I If data yielded p̂ = 5

10 , then the Bayes estimator is
αp̂ + (1− α)p∗ = 0.75(0.5) + 0.25(0.4) = 0.475



Example of Bayesian and Frequentist Analysis

I Samaniego and Reneau had 99 Stat 1 students each
formulate his/her own prior using this procedure

I the scatterplot shows their results
I they compared how each students Bayesian estimator

would perform against p̂, the frequentist estimator
I Bayesian estimator outperformed frequentist with 88 of the

99 priors.
I Priors that failed to yield better estimates had p* far off and

heavy weight on p*. “wrong” and “stubborn”
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Models by Infection State

Model to account for:
I Lag between infection with bacteria and antibody

production, will be estimated
I Different models are defined for each infection state

I State 1: No infection during entire study
I State 2: Infection “late”, no serology reaction occurs during

study
I State 3: Infection occurs early enough for serology reaction

to occur during study
I Assuming infection state is known, we assume serology

and fecal culture are independent
I Infection state unknown, inferred from data





Models by Infection State

Serology model for State 3 shown below; fecal same as state 2



Parameter Estimates
Putting priors on all parameters and using Bayesian methods
we obtain the following parameter estimates (total of 2199
parameters and latents):

95% Probability
Interval

Parameter Post. Mean Lower Upper
β0 -1.741 -1.761 -1.721
σβ0 0.067 0.052 0.087
τe 55.9 42.7 63.4
seF 0.57 0.52 0.63
spF 0.976 0.955 0.990
q1 0.48 0.41 0.55
q2 0.25 0.19 0.32
q3 0.26 0.22 0.32
lag 1.60 1.32 1.85

Table: Parameter Estimates for Johne’s Disease Data
(Semiparametric Model)



Conclusions about Slopes
Each cow in State 3 permitted to have its own slope for
serology reaction. Typical to assume these slopes are draws
from a normal distribution. We didn’t make this assumption and
estimated the distribution of slopes.
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Infection over Time
Because time of infection is estimated, can study how infection
spreads through herd over time.
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Further Research Needed

I More flexible serology trajectories
I Allow tests to be dependent


