Statistical Hocus Pocus? Assessing the Accuracy of a Diagnostic Screening Test When You Don't Even Know Who Has the Disease

> Michelle Norris Dept. of Mathematics and Statistics California State University, Sacramento

> > September 21, 2012



To play, simply print out this bingo sheet and attend a departmental seminar.

1

17 m m

11

11

-----

10

Mark over each square that occurs throughout the course of the lecture.

The first one to form a straight line (or all four corners) must yell out BINGO!! to win!

| В                                                                    |                                        | Ν                                           | G                                                                    | 0                                                       |
|----------------------------------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|
| Speaker<br>bashes<br>previous<br>work                                | Repeated<br>use of<br>"um"             | Speaker<br>sucks up<br>to host<br>professor | Host<br>Professor<br>falls<br>asleep                                 | Speaker<br>wastes 5<br>minutes<br>explaining<br>outline |
| Laptop<br>malfunction<br>Terror                                      |                                        | "et al."                                    | You're the<br>only one in<br>your lab that<br>bothered to<br>show up | Blatant<br>typo                                         |
| Entire slide<br>filled with<br>equations                             | "The data<br>clearly<br>shows"         | FREE<br>Speaker<br>runs out<br>of time      | Use of<br>Powerpoint<br>template<br>with blue<br>background          | References<br>Advisor<br>(past or<br>present)           |
| There's a<br>Grad Student<br>wearing<br>same clothes<br>as yesterday | Bitter<br>Post-doc<br>asks<br>question | "That's an<br>interesting<br>question"      | "Beyond<br>the scope<br>of this<br>work"                             | Master's<br>student<br>bobs head<br>fighting<br>sleep   |
| Speaker<br>forgets to<br>thank<br>collaborators                      | Cell phone<br>goes off                 | You've no<br>idea what's<br>going on        | "Future<br>work<br>will"                                             | Results<br>conveniently<br>show<br>improvement          |

WWW. PHDCOMICS. COM



#### Goals and Challenges of Diagnostic Screening

Hui and Walter Solution to No Gold Standard Problem

Longitudinal Diagnostic Screening

**Comparing Bayesian and Frequentist Statistics** 

Johne's Disease Model and Findings

# **Diagnostic Screening**

 Screening humans and animals for a multitude of diseases common practice in modern medicine

- throat culture for strep throat
- ELISA for HIV
- tissue biopsy for cancer
- Unfortunately, many tests are imperfect
- Statistical methods exist to quantify the accuracy of a screening test

Raw test results may be:

- binary, i.e. cancerous cells are present=1/not present=0
- discrete, i.e. colony count in bacterial culture
- continuous, i.e. optical density of serology test

For a binary test, performance defined using conditional probability.

# A bit on Conditional Probability

A method for adjusting probability if additional information is available about the outcome.

|        |             | iviajui |     |
|--------|-------------|---------|-----|
|        | Engineering | Math    | Tot |
| Male   | 14          | 6       | 20  |
| Female | 1           | 9       | 10  |
| Tot    | 15          | 15      | 30  |

Randomly select a student from this class. What is the probability the student is

- 1. male?
- 2. a male given you know the student is an engineer, written P(Male | Engr)?
- 3. an engineer given you know the student is male, i.e. P(Engr | Male)?

### Measures of Diagnostic Test Performance

- Sensitivity = Probability diseased person tests positive = P(+|D)
- Specificity = Prob undiseased person tests negative = P(-| No D)
- $\pi$  = proportion of population having disease

# The Easy Case

Easiest way to estimate the sensitivity and specificity is to administer the test to subjects whose **disease status is known**.

- Sensitivity (Se) is estimated by the sample proportion of positive tests among the diseased subjects
- Specificity (Sp) is estimated by sample proportion of negative tests among the non-diseased subjects

Stat 1 methods can typically be used to obtain confidence intervals for Se and Sp

$$\hat{p} \pm z_{rac{lpha}{2}} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

where  $\hat{p}$  is the proportion having the characteristic of interest *in the sample* 







Goals and Challenges of Diagnostic Screening

#### Hui and Walter Solution to No Gold Standard Problem

Longitudinal Diagnostic Screening

**Comparing Bayesian and Frequentist Statistics** 

Johne's Disease Model and Findings

### No Gold Standard Case

- "No gold standard" (NGS) data occur when there is no perfect test so that the true disease status of subjects is unknown (how to estimate SE, SP, π?)
- First breakthrough in NGS data in 1980, Hui and Walter used 2 indept tests on 2 pops

# Hui and Walter Solution to NGS Case

- Need two tests and two populations (could be males/females)
- For example, suppose we group the people in this room by gender
- We test each person with a serology test and a bacterial culture test for Strep Throat
- We don't know the true disease status of anyone

|                                                                                                                                                                                       | Name  | Serology | Culture | Group |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|---------|-------|--|--|--|
|                                                                                                                                                                                       | John  | +        | +       | 1     |  |  |  |
|                                                                                                                                                                                       | Jane  | -        | +       | 2     |  |  |  |
|                                                                                                                                                                                       | Susan | +        | -       | 2     |  |  |  |
| Summarize data with $n_{1++}$ =number in group 1 test + on both                                                                                                                       |       |          |         |       |  |  |  |
| test, <i>n</i> <sub>1+-</sub> , <i>n</i> <sub>1-+</sub> , <i>n</i> <sub>1</sub> , <i>n</i> <sub>2++</sub> , <i>n</i> <sub>2+-</sub> , <i>n</i> <sub>2-+</sub> , <i>n</i> <sub>2</sub> |       |          |         |       |  |  |  |
|                                                                                                                                                                                       |       |          |         |       |  |  |  |

## Hui and Walter, 1980

- With 2 tests in 2 populations, can estimate Se and Sp for both tests and prevalences in both populations using Max Lik: {Se<sub>1</sub>, Se<sub>2</sub>, Sp<sub>1</sub>, Sp<sub>2</sub>, π<sub>1</sub>, π<sub>2</sub>} WITHOUT KNOWING ANYONE'S TRUE DISEASE STATUS
- A few assumptions
  - Tests are independent conditional on disease status
  - The prevalences of the two pops are different
  - Se and Sp of both tests are the same for both pops

#### The Data

We are able to estimate the 6 parameters since we have 6 "bits" of data

| Test 2 |     |    |     |     | Т     | est 2 |     |     |      |
|--------|-----|----|-----|-----|-------|-------|-----|-----|------|
| Pop 1  |     | +  | -   | Tot | Pop 2 |       | +   | -   | Tot  |
|        | +   | 14 | 4   | 18  |       | +     | 887 | 31  | 918  |
| T 1    | -   | 9  | 528 | 537 | T 1   | -     | 37  | 367 | 404  |
|        | Tot | 23 | 532 | 555 |       | Tot   | 924 | 398 | 1322 |

Let  $n_{gij}$  be the number in group g having test 1 and 2 outcomes *i* and *j*. So,  $n_{1+-} = 4$  Getting estimates of  $\{Se_1, Se_2, Sp_1, Sp_2, \pi_1, \pi_2\}$  now like solving system of 6 eqns in 6 unknowns.



Goals and Challenges of Diagnostic Screening

Hui and Walter Solution to No Gold Standard Problem

Longitudinal Diagnostic Screening

Comparing Bayesian and Frequentist Statistics

Johne's Disease Model and Findings

# The Data

- Current research considers NGS data where subjects are screened repeated over time, longitudinal data
- Longitudinal methods have been applied to: HIV, diagnosing ovarian cancer, modeling cognition in dementia patients
- And to diagnosing Johne's Disease in cows

# Johne's Disease

#### No cure

- Significant economic losses due to reduced milk production
- No symptoms for roughly one year
- Early detection prevents disease from spreading
- "Semi-annual" screening of 365 cows with two imperfect tests administered at each test time: serology test (continuous) and a fecal culture test (binary)

#### Johne's Disease Data

Goal is to correctly classify cows as diseased or not using this data (Norris, Johnson, and Gardner, 2009)











#### Outline

Goals and Challenges of Diagnostic Screening

Hui and Walter Solution to No Gold Standard Problem

Longitudinal Diagnostic Screening

**Comparing Bayesian and Frequentist Statistics** 

Johne's Disease Model and Findings

# Bayesian versus Frequentist Data Analysis

- We used Bayesian methods to analyze the longitudinal fecal and serology tests for cows
- Frequentists make inferences based on the data only
- Bayesians use both the data collected AND so-called "prior" information from another independent source (previous study, expert, etc)
  - data and prior are combined in a probabilistically coherent manner using Bayes Theorem to obtain the "posterior distribution"
  - mean of posterior distribution often taken as estimate of parameter; may have a nice formula

# **Bayes Theorem**

$$f(\mu| ext{data}) = rac{f( ext{data} \mid \mu) \cdot g(\mu)}{P( ext{data})} = rac{f(x \mid \mu) \cdot g(\mu)}{P(x)}$$

- ► g(µ), the prior, reflects the probabilities associated with different values of the parameter before data is seen
- f(x | μ) represents the information about the parameter μ that is contained in the data
- The posterior distribution, f(µ | x), represents the "updated" probability distribution of µ once the prior has been combined with the information in the data
- Once posterior distn of μ is obtained, often use its mean to estimate μ

# Example of Bayesian and Frequentist Analysis

The problem (from Samaniego and Reneau, 1994):

- population consists of the first words of the 758 pages in a particular edition of W. Somerset Maugham's book Of Human Bondage
- task is to estimate p, the true proportion of words that have 6 or more letters
- The data will consist the number of words having 6 or more letters from 10 randomly selected pages. (n= sample size =10)
- The frequentist estimate of p is  $\hat{p} =$ the number of words having 6 or more letters in sample

#### Example of Bayesian and Frequentist Analysis

For a Bayesian analysis, you may construct a prior as follows:

- first take your best guess at the proportion of words having 6 or more letters, call it p\*. Suppose my p\* = 0.40.
- Now consider how much "weight," α ∈ [0, 1], you want to put on the data, i.e. p̂
- Estimate p by  $\alpha \hat{p} + (1 \alpha)p*$
- I choose α = 0.75
- If data yielded  $\hat{p} = \frac{5}{10}$ , then the Bayes estimator is  $\alpha \hat{p} + (1 \alpha)p * = 0.75(0.5) + 0.25(0.4) = 0.475$

# Example of Bayesian and Frequentist Analysis

- Samaniego and Reneau had 99 Stat 1 students each formulate his/her own prior using this procedure
- the scatterplot shows their results
- they compared how each students Bayesian estimator would perform against p̂, the frequentist estimator
- Bayesian estimator outperformed frequentist with 88 of the 99 priors.
- Priors that failed to yield better estimates had p\* far off and heavy weight on p\*. "wrong" and "stubborn"

#### Outline

Goals and Challenges of Diagnostic Screening

Hui and Walter Solution to No Gold Standard Problem

Longitudinal Diagnostic Screening

Comparing Bayesian and Frequentist Statistics

Johne's Disease Model and Findings

# Models by Infection State

Model to account for:

- Lag between infection with bacteria and antibody production, will be estimated
- Different models are defined for each infection state
  - State 1: No infection during entire study
  - State 2: Infection "late", no serology reaction occurs during study
  - State 3: Infection occurs early enough for serology reaction to occur during study
- Assuming infection state is known, we assume serology and fecal culture are independent
- Infection state unknown, inferred from data

# No Infection



#### Models by Infection State

Serology model for State 3 shown below; fecal same as state 2



time

#### **Parameter Estimates**

Putting priors on all parameters and using Bayesian methods we obtain the following parameter estimates (total of 2199 parameters and latents):

|                  |            | 95% Probability |        |  |  |  |
|------------------|------------|-----------------|--------|--|--|--|
|                  |            | Interval        |        |  |  |  |
| Parameter        | Post. Mean | Lower           | Upper  |  |  |  |
| $\beta_0$        | -1.741     | -1.761          | -1.721 |  |  |  |
| $\sigma_{eta_0}$ | 0.067      | 0.052           | 0.087  |  |  |  |
| $	au_{e}$        | 55.9       | 42.7            | 63.4   |  |  |  |
| se <sub>F</sub>  | 0.57       | 0.52            | 0.63   |  |  |  |
| sp <sub>F</sub>  | 0.976      | 0.955           | 0.990  |  |  |  |
| $q_1$            | 0.48       | 0.41            | 0.55   |  |  |  |
| $q_2$            | 0.25       | 0.19            | 0.32   |  |  |  |
| $q_3$            | 0.26       | 0.22            | 0.32   |  |  |  |
| lag              | 1.60       | 1.32            | 1.85   |  |  |  |

Table: Parameter Estimates for Johne's Disease Data(Semiparametric Model)

#### **Conclusions about Slopes**

Each cow in State 3 permitted to have its own slope for serology reaction. Typical to assume these slopes are draws from a normal distribution. We didn't make this assumption and estimated the distribution of slopes.



#### Infection over Time

Because time of infection is estimated, can study how infection spreads through herd over time.



### Further Research Needed

- More flexible serology trajectories
- Allow tests to be dependent